4.2. Filter
As the name suggests, filter
creates a list of elements for which a function returns true. Here is a short and concise example:
number_list = range(-5, 5)
less_than_zero = list(filter(lambda x: x < 0, number_list))
print(less_than_zero)
# Output: [-5, -4, -3, -2, -1]
filter
creates a list of elements for which a function returns true. Here is a short and concise example:number_list = range(-5, 5)
less_than_zero = list(filter(lambda x: x < 0, number_list))
print(less_than_zero)
# Output: [-5, -4, -3, -2, -1]
4.1. Map
Map
applies a function to all the items in an input_list. Here is the blueprint:
Blueprint
map(function_to_apply, list_of_inputs)
Most of the times we want to pass all the list elements to a function one-by-one and then collect the output. For instance:
items = [1, 2, 3, 4, 5]
squared = []
for i in items:
squared.append(i**2)
Map
allows us to implement this in a much simpler and nicer way. Here you go:items = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x**2, items))
Most of the times we use lambdas with
map
so I did the same. Instead of a list of inputs we can even have a list of functions!def multiply(x):
return (x*x)
def add(x):
return (x+x)
funcs = [multiply, add]
for i in range(5):
value = list(map(lambda x: x(i), funcs))
print(value)
# Output:
# [0, 0]
# [1, 2]
# [4, 4]
# [9, 6]
# [16, 8]
Không có nhận xét nào:
Đăng nhận xét